国产精品久久久久aaaa,色综合久久成人综合网,日本少妇被爽到高潮无码,特黄熟妇丰满人妻无码

學習啦 > 學習方法 > 通用學習方法 > 學習方法指導 > 高中數學知識點匯總,提高高中數學成績的方法有哪些?

高中數學知識點匯總,提高高中數學成績的方法有哪些?

時間: 惠敏1219 分享

高中數學知識點匯總,提高高中數學成績的方法有哪些?

  繁重的學習當中,大家都想總結知識點進行有條不絮的學習。小編今天給大家整理了一些高中數學知識點的匯總,值得大家閱讀。

  高中數學知識點匯總 值得閱讀

  (一)三角函數

  對于三角函數的考法共有兩種。分別是解三角形和三角函數本身。大概百分之十到二十的概率考解三角形,百分之八十到九十概率考對于三角函數本身的熟練運用。

  (二)概率統計

  考點覆蓋概率統計必修和選修的各個章節的內容,考查了抽樣法、統計圖表、數據的數字特征、用樣本估計整體、回歸分析、獨立性檢驗、古典概型、幾何概型、條件概率、相互獨立事件的概率、獨立重復試驗的概率、離散型隨機變量的分布列、數學期望與方差、超幾何分布、二項分布、正態分布等基礎知識和基本方法。

  (三)立體幾何

  這類題解題方法有兩種,傳統法和向量法,各有利弊。向量法可以說說任何情況下都可以使用,沒有任何技術含量,肯定能解出正確答案,但是計算量大而且容易出錯。

  (四)數列

  數列主要是求解通項公式和前n項和。首先是通項公式,要看題目中給出的條件形式,不同的形式對應不同的解題方法,其中主要包括公式法(定義法)、累加法、累乘法、待定系數法、數學歸納法 倒數變化法等,熟練應用這些方法并積累例題達到熟練的程度。

  (五)圓錐曲線

  在這里要明確它的求解方法:直接法(性質法)、定義法、直譯法、相關點法、參數法、交軌法、點差法。

  (六)導數和函數

  關于單調性、最值、極值的考察

  證明不等式

  函數中含有字母,分類討論字母的取值范圍

  (七)參數方程

  高中數學答題技巧

  高中數學答題沒有什么明確的技巧,所謂熟能生巧。題做的多了自然而然就找到了答題的技巧,會的題就多練幾道,總結相同類型的題的解題思路,見的題多了,自然就都知道該怎么解了。

  學會分析問題的條件與結論之間的聯系,掌握一題多解和多題一解的解題思路。

  錯誤的總結與記錄 解題后,要思考題中易混易錯的地方,總結預防錯誤的經驗和犯錯誤的教訓,有必要的要做好錯題記錄。 把一道題目做好,充分利用好題目的訓練功能,久而久之,你就會體會到“題不在多而在精”的道理。

  高中數學公式大全 高考文科必背數學公式整理

  高中重點數學公式大全

  乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根與系數的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理

  判別式

  b2-4ac=0 注:方程有兩個相等的實根

  b2-4ac>0 注:方程有兩個不等的實根

  b2-4ac<0 注:方程沒有實根,有共軛復數根

  三角函數公式

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些數列前n項和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

  圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標

  圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱側面積 S=c*h 斜棱柱側面積 S=c'*h

  正棱錐側面積 S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h'

  圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

  圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

  弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

  錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

  斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長

  柱體體積公式 V=s*h 圓柱體 V=pi*r2h

  高中文科數學必背公式總結

  公式一:

  設α為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2kπ+α)=sinα (k∈Z)

  cos(2kπ+α)=cosα (k∈Z)

  tan(2kπ+α)=tanα (k∈Z)

  cot(2kπ+α)=cotα (k∈Z)

  公式二:

  設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α與 -α的三角函數值之間的關系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數值之間的關系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  公式七:兩角和差公式

  兩角和與差的三角函數公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  公式八:二倍角公式

  二倍角的正弦、余弦和正切公式(升冪縮角公式)

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/[1-tan^2(α)]

  公式九:半角公式

  半角的正弦、余弦和正切公式(降冪擴角公式)

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

  公式十:萬能公式

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  公式十一:三倍角公式

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  提高高中數學成績的方法有哪些

  1.主動預習

  預習是主動獲取新知識的過程,有助于調動學習積極主動性,新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。

  因此,要注意培養自學能力,學會看書。如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。

  抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。

  2.主動思考

  很多同學在聽課的過程中,只是簡簡單單的聽,不能主動思考,這樣遇到實際問題時,會無從下手,不知如何應用所學的知識去解答問題。

  主要原因還是聽課過程中不思考惹的禍。除了我們跟著老師的思路走,還要多想想為什么要這么定義,這樣解題的好處是什么,這樣主動去想,不僅能讓我們更加認真的聽課,也能激發對某些知識的興趣,更有助于學習。

  靠著老師的引導,去思考解題的思路;答案真的不重要;重要的是方法!

  3.善于總結規律

  解答數學問題總的講是有規律可循的。在解題時,要注意總結解題規律,在解決每一道練習題后,要注意回顧以下問題:

  ① 本題最重要的特點是什么?

  ② 解本題用了哪些基本知識與基本圖形?

  ③ 本題你是怎樣觀察、聯想、變換來實現轉化的?

  ④ 解本題用了哪些數學思想、方法?

  ⑤ 解本題最關鍵的一步在那里?

  ⑥ 你做過與本題類似的題目嗎?在解法、思路上有什么異同?

  ⑦ 本題你能發現幾種解法?其中哪一種最優?那種解法是特殊技巧?你能總結在什么情況下采用嗎?

  把這一連串的問題貫穿于解題各環節中,逐步完善,持之以恒,孩子解題的心理穩定性和應變能力就可以不斷提高,思維能力就會得到鍛煉和發展。

  4.拓寬解題思路

  數學解題不要局限于本題,而要做到舉一反三、多思多想,解答完一個題目,要想想有沒有其他更加簡便的方法,這樣能夠幫助大家拓寬思路,這樣在以后的做題過程中就會有更多的選擇。

  5.必須要有錯題本

  說到錯題本不少同學都覺得自己的記憶力好,不需要錯題本就能記住,這是一種“錯覺”,每個人都有這種感覺,等到題目增多,學習內容加深,這時就會發現自己力不從心了。

  錯題本能夠隨時記錄自己的知識短板,幫助強化知識體系,有助于提升學習效率。有很多學霸都是因為積極使用了錯題本,而考取了高分。

5682 主站蜘蛛池模板: 翁牛特旗| 叶城县| 韩城市| 从化市| 昌吉市| 岑巩县| 张家界市| 邮箱| 武冈市| 东阿县| 巴彦淖尔市| 博湖县| 泸水县| 桑植县| 汉寿县| 垣曲县| 永川市| 金华市| 政和县| 五原县| 六盘水市| 得荣县| 宜春市| 湘潭县| 含山县| 昌平区| 古蔺县| 新绛县| 清水县| 贞丰县| 阿坝| 肇东市| 乐昌市| 舒城县| 区。| 岑溪市| 南江县| 徐水县| 常宁市| 海口市| 体育|